noSQL

Реляционные базы данных обречены?

Примечание переводчика: хоть статья довольно старая (опубликована 2 года назад) и носит громкое название, в ней все же дается хорошее представление о различиях реляционных БД и NoSQL БД, их преимуществах и недостатках, а также приводится краткий обзор нереляционных хранилищ.

image

В последнее время появилось много нереляционных баз данных. Это говорит о том, что если вам нужна практически неограниченная масштабируемость по требованию, вам нужна нереляционная БД.

Если это правда, значит ли это, что могучие реляционные БД стали уязвимы? Значит ли это, что дни реляционных БД проходят и скоро совсем пройдут? В этой статье мы рассмотрим популярное течение нереляционных баз данных применительно к различным ситуациям и посмотрим, повлияет ли это на будущее реляционных БД.

Реляционные базы данных существуют уже около 30 лет. За это время вспыхивало несколько революций, которые должны были положить конец реляционным хранилищам. Конечно, ни одна из этих революций не состоялась, и одна из них ни на йоту не поколебала позиции реляционных БД.

Начнем с основ

Реляционная база данных представляет собой набор таблиц (сущностей). Таблицы состоят из колонок и строк (кортежей). Внутри таблиц могут быть определены ограничения, между таблицами существуют отношения. При помощи SQL можно выполнять запросы, которые возвращают наборы данных, получаемых из одной или нескольких таблиц. В рамках одного запроса данные получаются из нескольких таблиц путем их соединения (JOIN), чаще всего для соединения используются те же колонки, которые определяют отношения между таблицами. Нормализация — это процесс структурирования модели данных, обеспечивающий связность и отсутствие избыточности в данных.

image

Доступ к реляционным базам данных осуществляется через реляционные системы управления базами данных (РСУБД). Почти все системы баз данных, которые мы используем, являются реляционными, такие как Oracle, SQL Server, MySQL, Sybase, DB2, TeraData и так далее.

Причины такого доминирования неочевидны. На протяжении всего существования реляционных БД они постоянно предлагали наилучшую смесь простоты, устойчивости, гибкости, производительности, масштабируемости и совместимости в сфере управлении данными.

Однако чтобы обеспечить все эти особенности, реляционные хранилища невероятно сложны внутри. Например, простой SELECT запрос может иметь сотни потенциальных путей выполнения, которые оптимизатор оценит непосредственно во время выполнения запроса. Все это скрыто от пользователей, однако внутри РСУБД создает план выполнения, основывающийся на вещах вроде алгоритмов оценки стоимости и наилучшим образом отвечающий запросу.

Проблемы реляционных БД

Хотя реляционные хранилища и обеспечивают наилучшую смесь простоты, устойчивости, гибкости, производительности, масштабируемости и совместимости, их показатели по каждому из этих пунктов не обязательно выше, чем у аналогичных систем, ориентированных на какую-то одну особенность. Это не являлось большой проблемой, поскольку всеобщее доминирование реляционных СУБД перевешивало какие-либо недочеты. Тем не менее, если обычные РБД не отвечали потребностям, всегда существовали альтернативы.

Сегодня ситуация немного другая. Разнообразие приложений растет, а с ним растет и важность перечисленных особенностей. И с ростом количества баз данных, одна особенность начинает затмевать все другие. Это масштабируемость. Поскольку все больше приложений работают в условиях высокой нагрузки, например, таких как веб-сервисы, их требования к масштабируемости могут очень быстро меняться и сильно расти. Первую проблему может быть очень сложно разрешить, если у вас есть реляционная БД, расположенная на собственном сервере. Предположим, нагрузка на сервер за ночь увеличилась втрое. Как быстро вы сможете проапгрейдить железо? Решение второй проблемы также вызывает трудности в случае использования реляционных БД.

Реляционные БД хорошо масштабируются только в том случае, если располагаются на единственном сервере. Когда ресурсы этого сервера закончатся, вам необходимо будет добавить больше машин и распределить нагрузку между ними. И вот тут сложность реляционных БД начинает играть против масштабируемости. Если вы попробуете увеличить количество серверов не до нескольких штук, а до сотни или тысячи, сложность возрастет на порядок, и характеристики, которые делают реляционные БД такими привлекательными, стремительно снижают к нулю шансы использовать их в качестве платформы для больших распределенных систем.

Чтобы оставаться конкурентоспособными, вендорам облачных сервисов приходится как-то бороться с этим ограничением, потому что какая ж это облачная платформа без масштабируемого хранилища данных. Поэтому у вендоров остается только один вариант, если они хотят предоставлять пользователям масштабируемое место для хранения данных. Нужно применять другие типы баз данных, которые обладают более высокой способностью к масштабированию, пусть и ценой других возможностей, доступных в реляционных БД.

Эти преимущества, а также существующий спрос на них, привел к волне новых систем управления базами данных.

Новая волна

Такой тип баз данных принято называть хранилище типа ключ-значение (key-value store). Фактически, никакого официального названия не существует, поэтому вы можете встретить его в контексте документо-ориентированных, атрибутно-ориентированных, распределенных баз данных (хотя они также могут быть реляционными), шардированных упорядоченных массивов (sharded sorted arrays), распределенных хэш-таблиц и хранилищ типа ключ-значения. И хотя каждое из этих названий указывает на конкретные особенности системы, все они являются вариациями на тему, которую мы будем назвать хранилище типа ключ-значение.

Впрочем, как бы вы его не называли, этот «новый» тип баз данных не такой уж новый и всегда применялся в основном для приложений, для которых использование реляционных БД было бы непригодно. Однако без потребности веба и «облака» в масштабируемости, эти системы оставались не сильно востребованными. Теперь же задача состоит в том, чтобы определить, какой тип хранилища больше подходит для конкретной системы.

Реляционные БД и хранилища типа ключ-значение отличаются коренным образом и предназначены для решения разных задач. Сравнение характеристик позволит всего лишь понять разницу между ними, однако начнем с этого:

Характеристики хранилищ

Реляционная БД Хранилище типа ключ-значение
База данных состоит из таблиц, таблицы содержат колонки и строки, а строки состоят из значений колонок. Все строки одной таблицы имеют единую структуру. Для доменов можно провести аналогию с таблицами, однако в отличие от таблиц для доменов не определяется структура данных. Домен – это такая коробка, в которую вы можете складывать все что угодно. Записи внутри одного домена могут иметь разную структуру.
Модель данных1 определена заранее. Является строго типизированной, содержит ограничения и отношения для обеспечения целостности данных. Записи идентифицируются по ключу, при этом каждая запись имеет динамический набор атрибутов, связанных с ней.
Модель данных основана на естественном представлении содержащихся данных, а не на функциональности приложения. В некоторых реализация атрибуты могут быть только строковыми. В других реализациях атрибуты имеют простые типы данных, которые отражают типы, использующиеся в программировании: целые числа, массива строк и списки.
Модель данных подвергается нормализации, чтобы избежать дублирования данных. Нормализация порождает отношения между таблицами. Отношения связывают данные разных таблиц. Между доменами, также как и внутри одного домена, отношения явно не определены.

Никаких join’ов

Хранилища типа ключ-значение ориентированы на работу с записями. Это значит, что вся информация, относящаяся к данной записи, хранится вместе с ней. Домен (о котором вы можете думать как о таблице) может содержать бессчетное количество различных записей. Например, домен может содержать информацию о клиентах и о заказах. Это означает, что данные, как правило, дублируются между разными доменами. Это приемлемый подход, поскольку дисковое пространство дешево. Главное, что он позволяет все связанные данные хранить в одном месте, что улучшает масштабируемость, поскольку исчезает необходимость соединять данные из различных таблиц. При использовании реляционной БД, потребовалось бы использовать соединения, чтобы сгруппировать в одном месте нужную информацию.

image

Хотя для хранения пар ключ-значение потребность в отношения резко падает, отношения все же нужны. Такие отношения обычно существуют между основными сущностями. Например, система заказов имела бы записи, которые содержат данные о покупателях, товарах и заказах. При этом неважно, находятся ли эти данные в одном домене или в нескольких. Суть в том, что когда покупатель размещает заказ, вам скорее всего не захочется хранить информацию о покупателе и о заказе в одной записи.

Вместо этого, запись о заказе должна содержать ключи, которые указывают на соответствующие записи о покупателе и товаре. Поскольку в записях можно хранить любую информацию, а отношения не определены в самой модели данных, система управления базой данных не сможет проконтролировать целостность отношений. Это значит, что вы можете удалять покупателей и товары, которые они заказывали. Обеспечение целостности данных целиком ложится на приложение.

Доступ к данным

Реляционная БД Хранилище типа ключ-значение
Данные создаются, обновляются, удаляются и запрашиваются с использованием языка структурированных запросов (SQL). Данные создаются, обновляются, удаляются и запрашиваются с использованием вызова API методов.
SQL-запросы могут извлекать данные как из одиночной таблица, так и из нескольких таблиц, используя при этом соединения (join’ы). Некоторые реализации предоставляют SQL-подобный синтаксис для задания условий фильтрации.
SQL-запросы могут включать агрегации и сложные фильтры. Зачастую можно использовать только базовые операторы сравнений (=, !=, <, >, <= и =>).
Реляционная БД обычно содержит встроенную логику, такую как триггеры, хранимые процедуры и функции. Вся бизнес-логика и логика для поддержки целостности данных содержится в коде приложений.

Взаимодействие с приложениями

Реляционная БД Хранилище типа ключ-значение
Чаще всего используются собственные API, или обобщенные, такие как OLE DB или ODBC. Чаще всего используются SOAP и/или REST API, с помощью которых осуществляется доступ к данным.
Данные хранятся в формате, который отображает их натуральную структуру, поэтому необходим маппинг структур приложения и реляционных структур базы. Данные могут более эффективно отображаться в структуры приложения, нужен только код для записи данных в объекты.

Хранилища типа ключ-значение: преимущества

Есть два четких преимущества таких систем перед реляционными хранилищами.

Подходят для облачных сервисов

Первое преимущество хранилищ типа ключ-значение состоит в том, что они проще, а значит обладают большей масштабируемостью, чем реляционные БД. Если вы размещаете вместе собственную систему, и планируете разместить дюжину или сотню серверов, которым потребуется справляться с возрастающей нагрузкой, за вашим хранилищем данных, тогда ваш выбор – хранилища типа ключ-значение.

Благодаря тому, что такие хранилища легко и динамически расширяются, они также пригодятся вендорам, которые предоставляют многопользовательскую веб-платформу хранения данных. Такая база представляет относительно дешевое средство хранения данных с большим потенциалом к масштабируемости. Пользователи обычно платят только за то, что они используют, однако их потребности могут вырасти. Вендор сможет динамически и практически без ограничений увеличить размер платформы, исходя из нагрузки.

Более естественная интеграция с кодом

Реляционная модель данных и объектная модель кода обычно строятся по-разному, что ведет к некоторой несовместимости. Разработчики решают эту проблему при помощи написания кода, который отображает реляционную модель в объектную модель. Этот процесс не имеет четкой и быстро достижимой ценности и может занять довольно значительное время, которое могло быть потрачено на разработку самого приложения. Тем временем многие хранилища типа ключ-значение хранят данные в такой структуре, которая отображается в объекты более естественно. Это может существенно уменьшить время разработки.

Другие аргументы в пользу использования хранилищ типа ключ-значение, наподобие «Реляционные базы могут стать неуклюжими» (кстати, я без понятия, что это значит), являются менее убедительными. Но прежде чем стать сторонником таких хранилищ, ознакомьтесь со следующим разделом.

Хранилища типа ключ-значение: недостатки

Ограничения в реляционных БД гарантируют целостность данных на самом низком уровне. Данные, которые не удовлетворяют ограничениям, физически не могут попасть в базу. В хранилищах типа ключ-значение таких ограничений нет, поэтому контроль целостности данных полностью лежит на приложениях. Однако в любом коде есть ошибки. Если ошибки в правильно спроектированной реляционной БД обычно не ведут к проблемам целостности данных, то ошибки в хранилищах типа ключ-значение обычно приводят к таким проблемам.

Другое преимущество реляционных БД заключается в том, что они вынуждают вас пройти через процесс разработки модели данных. Если вы хорошо спроектировали модель, то база данных будет содержать логическую структуру, которая полностью отражает структуру хранимых данных, однако расходится со структурой приложения. Таким образом, данные становятся независимы от приложения. Это значит, что другое приложение сможет использовать те же самые данные и логика приложения может быть изменена без каких-либо изменений в модели базы. Чтобы проделать то же самое с хранилищем типа ключ-значение, попробуйте заменить процесс проектирования реляционной модели проектированием классов, при котором создаются общие классы, основанные на естественной структуре данных.

И не забудьте о совместимости. В отличие от реляционных БД, хранилища, ориентированные на использование в «облаке», имеют гораздо меньше общих стандартов. Хоть концептуально они и не отличаются, они все имеют разные API, интерфейсы запросов и свою специфику. Поэтому вам лучше доверять вашему вендору, потому что в случае чего, вы не сможете легко переключиться на другого поставщика услуг. А учитывая тот факт, что почти все современные хранилища типа ключ-значение находятся в стадии бета-версий2, доверять становится еще рискованнее, чем в случае использования реляционных БД.

Ограниченная аналитика данных

Обычно все облачные хранилища строятся по типу множественной аренды, что означает, что одну и ту же систему использует большое количество пользователей и приложений. Чтобы предотвратить «захват» общей системы, вендоры обычно каким-то образом ограничивают выполнение запросов. Например, в SimpleDB запрос не может выполняться дольше 5 секунд. В Google AppEngine Datastore за один запрос нельзя получить больше, чем 1000 записей3.

Эти ограничения не страшны для простой логики (создание, обновление, удаление и извлечение небольшого количества записей). Но что если ваше приложение становится популярным? Вы получили много новых пользователей и много новых данных, и теперь хотите сделать новые возможности для пользователей или каким-то образом извлечь выгоду из данных. Тут вы можете жестко обломаться с выполнением даже простых запросов для анализа данных. Фичи наподобие отслеживания шаблонов использования приложения или системы рекомендаций, основанной на истории пользователя, в лучшем случае могут оказаться сложны в реализации. А в худшем — просто невозможны.

В таком случае для аналитики лучше сделать отдельную базу данных, которая будет заполняться данными из вашего хранилища типа ключ-значение. Продумайте заранее, каким образом это можно будет сделать. Будете ли вы размещать сервер в облаке или у себя? Не будет ли проблем из-за задержек сигнала между вами и вашим провайдером? Поддерживает ли ваше хранилище такой перенос данных? Если у вас 100 миллионов записей, а за один раз вы можете взять 1000 записей, сколько потребуется на перенос всех данных?

Однако не ставьте масштабируемость превыше всего. Она будет бесполезна, если ваши пользователи решат пользоваться услугами другого сервиса, потому что тот предоставляет больше возможностей и настроек.

Облачные хранилища

Множество поставщиков веб-сервисов предлагают многопользовательские хранилища типа ключ-значение. Большинство из них удовлетворяют критериям, перечисленным выше, однако каждое обладает своими отличительными фичами и отличается от стандартов, описанных выше. Давайте взглянем на конкретные пример хранилищ, такие как SimpleDB, Google AppEngine Datastore и SQL Data Services.

Amazon: SimpleDB

SimpleDB — это атрибутно-ориентированное хранилище типа ключ-значение, входящее в состав Amazon WebServices. SimpleDB находится в стадии бета-версии; пользователи могут пользовать ей бесплатно — до тех пор пока их потребности не превысят определенный предел.

image

У SimpleDB есть несколько ограничений. Первое — время выполнения запроса ограничено 5-ю секундами. Второе — нет никаких типов данных, кроме строк. Все хранится, извлекается и сравнивается как строка, поэтому для того, чтобы сравнить данные, вам нужно будет преобразовать их в формат ISO8601. Третье — максимальные размер любой строки составляет 1024 байта, что ограничивает размер текста (например, описание товара), который вы можете хранить в качестве атрибута. Однако поскольку структура данных гибкая, вы можете обойти это ограничения, добавляя атрибуты «ОписаниеТовара1», «Описание товара2» и т.д. Но количество атрибутов также ограничено — максимум 256 атрибутов. Пока SimpleDB находится в стадии бета-версии, размер домена ограничен 10-ю гигабайтами, а вся база не может занимать больше 1-го терабайта.

Одной из ключевых особенностей SimpleDB является использование модели конечной констистенции (eventual consistency model). Эта модель подходит для многопоточной работы, однако следует иметь в виду, что после того, как вы изменили значение атрибута в какой-то записи, при последующих операциях чтения эти изменения могут быть не видны. Вероятность такого развития событий достаточно низкая, тем не менее, о ней нужно помнить. Вы же не хотите продать последний билет пяти покупателям только потому, что ваши данные были неконсистентны в момент продажи.

Google AppEngine Data Store

Google’s AppEngine Datastore построен на основе BigTable, внутренней системе хранения структурированных данных от Google. AppEngine Datastore не предоставляет прямой доступ к BigTable, но может восприниматься как упрощенный интерфейс взаимодействия с BigTable.

image

AppEngine Datastore поддерживает большее число типов данных внутри одной записи, нежели SimpleDB. Например, списки, которые могут содержать коллекции внутри записи.

Скорее всего вы будете использовать именно это хранилище данных при разработке с помощью Google AppEngine. Однако в отличии от SimpleDB, вы не сможете использовать AppEngine Datastore (или BigTable) вне веб-сервисов Google.

Microsoft: SQL Data Services

image

SQL Data Services является частью платформы Microsoft Azure. SQL Data Services является бесплатной, находится в стадии бета-версии и имеет ограничения на размер базы. SQL Data Services представляет собой отдельное приложение — надстройку над множеством SQL серверов, которые и хранят данные. Эти хранилища могут быть реляционными, однако для вас SDS является хранилищем типа ключ-значение, как и описанные выше продукты.

Необлачные хранилища

Существует также ряд хранилищ, которыми вы можете воспользоваться вне облака, установив их у себя. Почти все эти проекты являются молодыми, находятся в стадии альфа- или бета-версии, и имеют открытый код. С открытыми исходниками вы, возможно, будете больше осведомлены о возможных проблемах и ограничениях, нежели в случае использования закрытых продуктов.

CouchDB

CouchDB — это свободно распространяемая документо-ориентированная БД с открытым исходным кодом. В качестве формата хранения данных используется JSON. CouchDB призвана заполнить пробел между документо-ориентированными и реляционными базами данных с помощью «представлений». Такие представления содержат данные из документов в виде, схожим с табличным, и позволяют строить индексы и выполнять запросы.

image

В настоящее время CouchDB не является по-настоящему распределенной БД. В ней есть функции репликации, позволяющие синхронизировать данные между серверами, однако это не та распределенность, которая нужна для построения высокомасштабируемого окружения. Однако разработчики CouchDB работают над этим.

Проект Voldemort

Проект Voldemort — это распределенная база данных типа ключ-значение, предназначенная для горизонтального масштабирования на большом количестве серверов. Он родилась в процессе разработки LinkedIn и использовалась для нескольких систем, имеющих высокие требования к масштабируемости. В проекте Voldemort также используется модель конечной консистенции.

Mongo

image

Mongo — это база данных, разрабатываемая в 10gen Гейром Магнуссоном и Дуайтом Меррименом (которого вы можете знать по DoubleClick). Как и CouchDB, Mongo — это документо-ориентированная база данных, хранящая данные в JSON формате. Однако Mongo скорее является объектной базой, нежели чистым хранилищем типа ключ-значение.

Drizzle

image

Drizzle представляет совсем другой подход к решению проблем, с которыми призваны бороться хранилища типа ключ-значение. Drizzle начинался как одна из веток MySQL 6.0. Позже разработчики удалили ряд функций (включая представления, триггеры, скомпилированные выражения, хранимые процедуры, кэш запросов, ACL, и часть типов данных), с целью создания более простой и быстрой СУБД. Тем не менее, Drizzle все еще можно использовать для хранения реляционных данных. Цель разработчиков — построить полуреляционную платформу, предназначенную для веб-приложений и облачных приложений, работающих на системах с 16-ю и более ядрами.

Решение

В конечном счете, есть четыре причины, по которым вы можете выбрать нереляционное хранилище типа ключ-значение для своего приложения:

  1. Ваши данные сильно документо-ориентированны, и больше подходят для модели данных ключ-значение, чем для реляционной модели.
  2. Ваша доменная модель сильно объектно-ориентированна, поэтому использования хранилища типа ключ-значение уменьшит размер дополнительного кода для преобразования данных.
  3. Хранилище данных дешево и легко интегрируется с веб-сервисами вашего вендора.
  4. Ваша главная проблема — высокая масштабируемость по запросу.

Однако принимая решение, помните об ограничениях конкретных БД и о рисках, которые вы встретите, пойдя по пути использования нереляционных БД.

Для всех остальных требований лучше выбрать старые добрые реляционные СУБД. Так обречены ли они? Конечно, нет. По крайней мере, пока.


1 — по моему мнению, здесь больше подходит термин «структура данных», однако оставил оригинальное data model.

2 — скорее всего, автор имел в виду, что по своим возможностям нереляционные БД уступают реляционным.

3 — возможно, данные уже устарели, статья датируется февралем 2009 года.